Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Actual. osteol ; 17(2): 78-91, 2021. graf, ilus
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1370190

ABSTRACT

La concepción original del mecanostato como un regulador de la rigidez estructural ósea orientado a mantener un determinado 'factor de seguridad' en todos los esqueletos parece no corresponder por igual a cualquier hueso y para cualquier tipo de estímulo. Hemos descubierto que la estructura cortical diafisaria del peroné humano manifiesta un comportamiento ambiguo del sistema, referido al uso del pie. La diáfisis peronea, además de ser insensible al desuso, se rigidiza, como sería de esperar, por entrenamientos en disciplinas deportivas que rotan o revierten el pie (hockey, fútbol, rugby); pero, llamativamente, se flexibiliza en su mitad proximal por entrenamiento en carrera larga, que optimiza el rendimiento del salto que acompaña a cada paso. La referida rigidización robustecería la región peronea de inserción de los músculos que rotan o revierten el pie, favoreciendo la locomoción sobre terrenos irregulares o 'gambeteando', propia de especies predadoras como los leopardos. La 'inesperada' flexibilización proximal, pese a reducir la resistencia a la fractura por flexión lateral (poco frecuente en el hombre), favorecería la absorción elástica de la energía contráctil de la musculatura inserta, optimizando el rendimiento del salto al correr, condición vital para especies presas como las gacelas. La falta de analogía de estas respuestas de la estructura peronea a distintos entrenamientos, incompatible con el mantenimiento de un factor de seguridad, sugiere su vinculación preferencial con la optimización de aptitudes esqueléticas con valor selectivo. Esto ampliaría el espectro regulatorio del mecanostato a propiedades esqueléticas 'vitales', más allá del control de la integridad ósea. Su manifestación en el hombre, ajena a connotaciones selectivas (quizá resultante del mantenimiento de genes ancestrales), permitiría proponer la indicación de ejercicios orientados en direcciones preferenciales a este respecto, especialmente cuando estas coincidieran con las de las fuerzas que podrían fracturar al hueso. (AU)


The original notion of the mechanostat as a regulator of bone structural rigidity oriented to maintain a certain 'safety factor' in all skeletons does not seem to correspond equally to every bone and for any type of stimulus. We have discovered that the diaphyseal cortical structure of the human fibula shows an ambiguous behavior of the system, with reference to the use of the foot. The peroneal shaft, in addition to being insensitive to disuse, becomes stiffened, as might be expected, by training in sport disciplines that involve rotating or reversing the foot (hockey, soccer, rugby); but, remarkably, it becomes more flexible in its proximal half by long-distance running training, which optimizes the performance of the jump that accompanies each step. The stiffening would strengthen the peroneal region of insertion of the muscles that rotate or reverse the foot, favoring locomotion on uneven terrain or 'dribbling', typical of predatory species such as leopards. The 'unexpected' proximal flexibilization, despite reducing the resistance to lateral flexion fracture (rare in human), would favor the elastic absorption of contractile energy from the inserted muscles, optimizing jumping performance when running, a vital condition for prey species such as gazelles. The lack of analogy of these responses of the peroneal structure to different training, incompatible with the maintenance of a safety factor, suggests its preferential link with the optimization of skeletal aptitudes with selective value. This would expand the regulatory spectrum of the mechanostat to 'vital' skeletal properties, beyond the control of bone integrity. Its manifestation in humans, oblivious to selective connotations (perhaps resulting from the maintenance of ancestral genes), would make it possible to propose the indication of exercises oriented in preferential directions, especially when they coincide with the direction of the forces that could fracture the bone. (AU)


Subject(s)
Humans , Animals , Sports/physiology , Bone and Bones/physiology , Exercise/physiology , Fibula/physiology , Foot/physiology , Soccer/physiology , Track and Field/physiology , Biomechanical Phenomena , Fractures, Bone/prevention & control , Fibula/anatomy & histology , Football/physiology , Hockey/physiology
2.
Actual. osteol ; 16(1): 26-34, Ene - abr. 2020. ilus, graf
Article in Spanish | LILACS | ID: biblio-1130074

ABSTRACT

La expansión modeladora de la geometría cortical de un hueso inducida por su entorno mecánico podría ser difícil de modificar por estímulos ulteriores con diferente direccionalidad. Este estudio, que por primera vez combina datos tomográficos del peroné (pQCT) y dinamométricos de la musculatura peronea lateral, intenta demostrar que, en individuos jóvenes no entrenados, el entrenamiento en fútbol produce cambios geométricos peroneos expansivos, similares a los del rugby, que podrían interferir en los efectos de un entrenamiento ulterior direccionalmente diferente (carrera larga). Confirmando la hipótesis, los resultados indican, con evidencias originales, 1) la relevancia creciente del uso del pie (rotación externa y eversión provocadas por los peroneos laterales) para la determinación de la geometría peronea (incremento del desarrollo de los indicadores de masa y de diseño óseos), evidenciada por la secuencia creciente de efectos: carrera < fútbol < rugby; 2) la predominancia de esos efectos sobre el desarrollo centro-proximal del peroné para resistir a la flexión lateral, y en la región distal para resistir el buckling (principal sitio y causa de fractura del hueso) y 3.) la relevancia de la anticipación de esos efectos para interferir en la manifestación de los cambios producidos por un entrenamiento ulterior (carrera), cuando los del primero (fútbol) afectan la modelación cortical de modo expansivo. Esta última deducción demuestra, en forma inédita, que un cambio modelatorio expansivo tempranamente inducido sobre la estructura cortical ósea 'delimitaría el terreno'para la manifestación de cualquier otro efecto ulterior por estímulos de distinta direccionalidad. (AU)


The modeling-dependent, geometrical expansion of cortical bone induced by the mechanical environment could be hard to modify by subsequent stimulations with a different directionality. The current study aimed to demonstrate that in young, untrained individuals, training in soccer or rugby enhances the geometric properties of the fibula cortical shell in such a way that the geometrical changes could interfere on the effects of a second training in which the loads are induced in a different direction, e.g. long-distance running. The original findings reported herein confirm our hypothesis and support 1) The relevance of the use of the foot (external rotation and eversion produced by peroneus muscles) to determine fibula geometry (improved development of indicators of bone mass and design) as evidenced by the increasing nature of the effects induced by running < soccer < rugby trainings; 2) The predominance of those effects on the ability of the fibula to resist lateral bending in the centralproximal region (insertion of peroneus muscles), and to resist buckling in the distal region (the main cause and site of the most frequent bone fractures), and 3) The interaction of the effects of a previous training with those of a subsequent training with a different orientation of the loads when the former induced a modeling-dependent expansion of the cortex. Our results support the proposed hypothesis with original arguments by showing that a first, expansive effect induced on cortical bone modeling would set the stage the manifestation of any subsequent effect derived from mechanical stimuli. (AU)


Subject(s)
Humans , Male , Adolescent , Adult , Young Adult , Exercise/physiology , Fibula/growth & development , Running/physiology , Soccer/physiology , Sports/physiology , Tomography , Bone Density , Fractures, Bone/prevention & control , Muscle Strength/physiology , Muscle Strength Dynamometer , Fibula/diagnostic imaging , Cortical Bone/diagnostic imaging , Foot/growth & development , Foot/physiology , Foot/diagnostic imaging , Football/physiology
3.
Actual. osteol ; 16(1): 47-66, Ene - abr. 2020. ilus
Article in Spanish | LILACS | ID: biblio-1140035

ABSTRACT

La "razón de ser" de nuestros huesos y esqueletos constituye un dilema centralizado en los conceptos biológicos de "estructura" y "organización", cuya solución necesitamos comprender para interpretar, diagnosticar, tratar y monitorear correctamente las osteopatías fragilizantes. Últimamente se ha reunido conocimiento suficiente para proponer aproximaciones razonables a ese objetivo. La que exponemos aquí requiere la aplicación de no menos de 6 criterios congruentes: 1) Un criterio cosmológico, que propone un origen común para todas las cosas; 2) Un criterio biológico, que explica el origen común de todos los huesos; 3) Un enfoque epistemológico, que desafía nuestra capacidad de comprensión del concepto concreto de estructura y del concepto abstracto de organización, focalizada en la noción rectora de direccionalidad espacial; 4) Una visión ecológica, que destaca la importancia del entorno mecánico de cada organismo para la adecuación de la calidad mecánica de sus huesos a las "funciones de sostén" que les adjudicamos; 5) Una correlación entre todo ese conocimiento y el necesario para optimizar nuestra aptitud para resolver los problemas clínicos implicados y 6) Una jerarquización del papel celular en el manejo de las interacciones genético-ambientales necesario para asimilar todo el problema a una simple cuestión de organización direccional de la estructura de cada hueso. Solo aplicando estos 6 criterios estaríamos en condiciones de responder a la incógnita planteada por el título. La conclusión de esta interpretación de la conducta y función de los huesos debería afectar el fundamento de la mayoría de las indicaciones farmacológicas destinadas al tratamiento de la fragilidad ósea. (AU)


The nature of the general behavior of our bones as weight-bearing structures is a matter of two biological concepts, namely, structure and organization, which are relevant to properly interpret, diagnose, treat, and monitor all boneweakening diseases. Different approaches can be proposed to trace the corresponding relationships. The one we present here involves six congruent criteria, namely, 1) a cosmological proposal of a common origin for everything; 2) a biological acknowledgement of a common origin for all bones; 3) the epistemological questioning of our understanding of the concrete concept of structure and the abstract notion of organization, focused on the lead idea of directionality; 4) the ecological insight that emphasizes the relevance of the mechanical environment of every organism to the naturally-selected adjustment of the mechanical properties of their mobile bones to act as struts or levers; 5) The clinical aspects of all the alluded associations; 6) The central role of bone cells to control the genetics/ environment interactions of any individual as needed to optimize the directionality of the structure of each of his/her bones to keep their mechanical ability within physiological limits. From our point of view, we could only solve the riddle posed by the title by addressing all of these six criteria. The striking conclusion of our analysis suggests that the structure (not the mass) of every bone would be controlled not only to take care of its mechanical ability, but also to cope with other properties which show a higher priority concerning natural selection. The matter would be that this interpretation of bone behavior and 'function' should affect the rationales for most pharmacological indications currently made to take care of bone fragility. (AU)


Subject(s)
Humans , Bone and Bones/physiology , Bone Diseases, Metabolic/diagnosis , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/therapy , Osteoporosis/diagnosis , Osteoporosis/therapy , Bone and Bones/anatomy & histology , Bone and Bones/cytology , Bone and Bones/ultrastructure , Bone Diseases, Metabolic/therapy , Epigenesis, Genetic
5.
Actual. osteol ; 14(2): 125-147, Mayo - Ago. 2018. ilus, graf, tab
Article in Spanish | LILACS | ID: biblio-1116310

ABSTRACT

En consonancia con la orientación tradicional de nuestras investigaciones, la Osteología está incorporando progresivamente el análisis estructural-biomecánico óseo y las interacciones músculo-esqueléticas. En este artículo se sintetizan los aportes originales del CEMFoC a la Osteología moderna en el terreno biomecánico en forma didáctica, para que el lector aprecie sus posibles aplicaciones clínicas. Los hallazgos aportaron evidencias sucesivas en apoyo de dos proposiciones fundamentales: a) los huesos deben interpretarse como estructuras resistivas, biológicamente servocontroladas ("Los huesos tienden siempre a mantener un factor de seguridad que permite al cuerpo trabajar normalmente sin fracturarse" ­ Paradigma de Utah) y b) los huesos interactúan con su entorno mecánico, determinado principalmente por las contracciones musculares, en forma subordinada al entorno metabólico ("Los huesos son lo que los músculos quieren que sean, siempre que las hormonas lo permitan"). Los avances producidos se refieren, tanto cronológica como didácticamente, al conocimiento osteológico en general y al desarrollo de recursos novedosos para el diagnóstico no invasivo de fragilidad ósea, para distinguir entre osteopenias y osteoporosis, y para discriminar entre sus etiologías 'mecánica' y 'sistémica'. Finalmente, el nuevo conocimiento se integra en la proposición de un algoritmo diagnóstico para osteopenias y osteoporosis. El espíritu general de la presentación destaca que la evaluación osteomuscular dinámicamente integrada genera un nuevo espacio de análisis personalizado de los pacientes para la atención de cualquier osteopatía fragilizante con criterio biomecánico. (AU)


In consonance with the traditional spirit of our studies, skeletal research is being progressively focused on the structural-biomechanical analysis of bone and the muscle-bone interactions. In this article, the CEMFoC's members summarize their original findings in bone biomechanics and their potential clinical applications. These findings provided evidence supporting two fundamental hypotheses, namely, A. bones constitute resistive structures, which are biologically servo-controlled ('Bones tend to maintain a safety factor which allows the body to function normally avoiding fractures' ­ the 'Utah paradigm'), and B. the interactions of bones with their mechanical environment mainly are determined by the contraction of local muscles - 'bone-muscle units'), and are subordinated to the control of the metabolic environment ('Bones are what muscles wish them to be, provided that hormones allow for it'). The achievements in the field are presented in a chronological and didactical sequence concerning the general knowledge in Osteology and the development of novel resources for non-invasive diagnosis of bone fragility, aiming to distinguish between osteopenias and osteoporosis and the 'mechanical' and 'metabolic' etiology of these conditions. Finally, the integrated new knowledge is presented as supporting for a proposed diagnostic algorithm for osteopenias and osteoporosis. In general terms, the article highlights the dynamic evaluation of the musculoskeletal system as a whole, opening a new diagnostic field for a personalized evaluation of the patients affected by a boneweakening disease, based on functional and biomechanical criteria. (AU)


Subject(s)
Humans , Animals , Rats , Bone and Bones/diagnostic imaging , Osteology/trends , Musculoskeletal System/diagnostic imaging , Osteogenesis Imperfecta/diagnostic imaging , Osteoporosis/etiology , Osteoporosis/diagnostic imaging , Parathyroid Hormone/administration & dosage , Parathyroid Hormone/therapeutic use , Biomechanical Phenomena , Bone and Bones/anatomy & histology , Bone and Bones/metabolism , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/diagnostic imaging , Algorithms , Calcitonin/therapeutic use , Cholecalciferol/pharmacology , Human Growth Hormone/therapeutic use , Diphosphonates/pharmacology , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Musculoskeletal System/anatomy & histology , Musculoskeletal System/metabolism
6.
Actual. osteol ; 12(1): 35-46, 2016. graf, ilus
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1379992

ABSTRACT

Se define como estrés (stress) tanto la fuerza que una carga externa ejerce sobre un cuerpo sólido como la fuerza reactiva que acompaña a la primera (Ley de Newton), por unidad de área imaginaria transversal a su dirección. Las cargas internas reactivas inducen deformaciones proporcionales del cuerpo. La resistencia del cuerpo a deformarse se llama rigidez. La deformación puede resquebrajar el cuerpo y, eventualmente, producir una fractura por confluencia de trazos. La resistencia del cuerpo a separarse en fragmentos por esa causa se llama tenacidad. La resistencia del cuerpo a la fractura es proporcional al stress que puede soportar sin separarse en fragmentos por deformación (no hay fractura sin deformación y sin stress previo). El stress máximo que un cuerpo puede soportar sin fracturarse resulta de una combinación de ambas propiedades: rigidez y tenacidad, cada una con distintos determinantes biológicos. Una o varias deformaciones del cuerpo pueden provocarle resquebrajaduras sin fracturarlo. La acumulación de resquebrajaduras determina la "fatiga" del material constitutivo del cuerpo, que reduce su rigidez, tenacidad y resistencia a la fractura para la próxima ocasión ("fragilidad por fatiga"). En el caso de los huesos, en general, los términos stress y fatiga tienen las connotaciones amplias referidas, respecto de todas las fracturas posibles. La fatiga predispone a fracturas a cargas bajas, que se denominan (correctamente) "fracturas por fatiga" y también (incorrectamente) "fracturas por stress", para distinguirlas de las que ocurren corrientemente, sin resquebrajaduras previas al trauma, que se denominan (incorrectamente) "fracturas por fragilidad, o por insuficiencia". En realidad, todas las fracturas se producen por stress y por fragilidad o insuficiencia (en conjunto); pero la distinción grosera entre fracturas "por fatiga, o por stress", por un lado, y "por fragilidad" o "por insuficiencia", por otro, aceptando las amplias connotaciones referidas antes, tiene valor en la práctica clínica. Este artículo intenta explicar esas particularidades biomecánicas y describir las distintas condiciones que predisponen a las fracturas "por fatiga o por stress" en la clínica, distinguiéndolas de las fracturas "por fragilidad o por insuficiencia" (manteniendo estas denominaciones) y detallando las características de interés directo para su diagnóstico y tratamiento. (AU)


The term "stress" expresses the force exerted by an external load on a solid body and the accompanying, opposed force (Newton's Law), expressed per unit of an imaginary area perpendicular to the loading direction. The internal loads generated this way deform (strain) proportionally the body's structure. The resistance of the body to strain expresses its stiffness. Critical strain magnitudes may induce micro-fractures (microdamage), the confluence of which may fracture the body. The body's resistance to separation into fragments determines its toughness. Hence, the body's resistance to fracture is proportional to the stress the body can support (or give back) while it is not fractured by the loadinduced strain (no stress, no strain -> no fracture). Therefore, the maximal stress the body can stand prior to fracture is determined by a combination of both, its stiffness and its toughness; and each of those properties is differently determined biologically. One or more deformations of the body may induce some microdamage but not a fracture. Microdamage accumulation determines the fatigue of the material constitutive of the body and reduces body's toughness, leading to a "fatigue-induced fragility". In case of bones, in general, both stress and fatigue have the referred, wide connotations, regarding any kind of fractures. In particular, bone fatigue predisposes to low-stress fractures, which are named (correctly) "fatigue fractures" and also misnamed "stress fractures", to distinguish them from the current fractures that occur without any excess of microdamage, that are named (wrongly) "fragility" or "insufficiency" fractures. In fact, all fractures result from all stress and fragility or insufficiency as a whole; however, the gross distinction between "fatigue or stress fractures", on one side, and "fragility or insufficiency fractures", on the other, accepting the wide connotations of the corresponding terminology, is relevant to clinical practice. This article aims to explain the above biomechanical features and describe the different instances that predispose to "fatigue or stress fractures" in clinical practice, as a different entity from "insufficiency or fragility fractures" (maintaining this nomenclature), and describe their relevant features to their diagnosis and therapy. (AU)


Subject(s)
Humans , Biomechanical Phenomena/physiology , Fractures, Stress/physiopathology , Osteogenesis Imperfecta/etiology , Bone and Bones/physiology , Bone and Bones/chemistry , Frailty/physiopathology , Flexural Strength/physiology
7.
Acta odontol. latinoam ; 24(3): 223-228, 2011. ilus, tab
Article in English | LILACS | ID: biblio-949673

ABSTRACT

The present investigation was performed to assess the biomechanical repercussion of protein malnutrition imposed on rats between the 26th and 135th days of postnatal life on the mandible, which is not a weight-bearing bone but supports the loads related to the masticatory activity. Female Wistar rats aged 26 d (n=14) were placed on either a 4%-protein diet (ICN 960254, P4 group) or a 20%-protein diet (ICN 960260, P20 group) and killed 111 d later. Both body weight and length were recorded regularly. The mandibles were dissected and cleaned of adhering soft tissue. Mandibular growth was estimated directly by taking measurements between anatomical points. Areal Bone Mineral Density (BMD) was estimated using a bone densitometer (LUNAR DPX-L). Mechanical properties of the right hemimandible were determined using a three-point bending mechanical test to obtain the load/deformation curve and estimate the structural properties of the bone. Results were summarized as means ± SD. Comparisons between parameters were performed by Student's t test. A 75% reduction in body weight and a 32% reduction in body length were observed in P4 rats. Like body size, mandibular weight, length, height and area (index of mandibular size) were negatively affected by P4 diet, as was the posterior part of the bone (posterior to molar III). The anterior part (alveolar and incisor alveolar process) was not affected by age or diet. The "load capacity" extrinsic properties of the mandible (load fracture, stiffness, yielding point) were between 43% and 64% of control value in protein restricted rats. BMD was similar in both groups of animals. Conclusion: 1) Chronic protein malnutrition imposed on rats from infancy to early adulthood reduces the growth of the posterior part of the mandible without inducing changes in the anterior part, which produces some deformation of the bone in relation to age-matched rats; and 2) the significant reduction of strength and stiffness of the mandible seem to be the result of an induced loss of gain in bone structural properties as a consequence of a correlative loss of gain in both growth and mass, yet not in bone material properties.


La investigación presente fue diseñada con el objeto de evaluar la repercusión biomecánica de la malnutrición proteica impuesta a ratas entre los días 26º y 135º de edad sobre la mandíbula (M), hueso que no soporta carga relacionada con el peso corporal sino con las fuerzas masticatorias. Ratas Wistar hembras de 26 d de edad (n=14) fueron alimentadas con dietas conteniendo 4% (grupo P4) (ICN 960254) o 20% (grupo P20) (ICN 960260) de caseína y sacrificadas 111 d después. Peso y longitud corporales fueron registrados regularmente. Las mandíbulas fueron disecadas y liberadas de tejido blando. Se realizaron mediciones entre diversos puntos anatómicos para estimar la morfometría del hueso. La Densidad Mineral Osea (DMO) fue determinada en un densitómetro LUNAR DPX-L. La M derecha de cada animal fue sometida al test de flexión a 3 puntos para obtener la curva carga/deformación y estimar las propiedades estructurales del hueso mandibular. Los resultados (X±DS) fueron analizados estadísticamente mediante test t de Student. El peso y la longitud corporales fueron menores en el grupo P4 que en el P20 (-75% y -32%, respectivamente). Longitud de la base, altura y área mandibular (índice del tamaño de M) fueron afectados negativamente por la dieta P4, lo mismo que la porción posterior de M (posterior al molar III). La porción anterior (procesos alveolar e incisivo) no fueron afectadas por dieta o edad. Todas las propiedades biomecánicas de M (carga de fractura, resistencia en fase elástica, límite elástico) fueron 43-64% menores en grupo P4 que en grupo P20. El valor de DMO fue similar en ambos grupos. CONCLUSION: 1) La malnutrición proteica crónica impuesta a ratas desde la infancia hasta la adultez reduce el crecimiento de la porción posterior de la mandíbula sin inducir cambios en su porción anterior, lo que produce una cierta deformación del hueso en comparación con animales de la misma edad; y 2) la importante disminución de la resistencia a fractura y de la rigidez durante el período elástico sería el resultado de una reducción de ganancia de las propiedades estructurales óseas como consecuencia de una reducción correlativa de ganancia de masa ósea, con mantenimiento de la normalidad de las propiedades óseas intrínsecas.


Subject(s)
Animals , Female , Rats , Protein Deficiency/physiopathology , Bone Density , Mandible/physiopathology , Biomechanical Phenomena , Chronic Disease , Rats, Wistar , Diet, Protein-Restricted
SELECTION OF CITATIONS
SEARCH DETAIL